Sherman
Abstract:Conventional multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations by amalgamating item identity (ID) embeddings with multimodal features. Nevertheless, our empirical and theoretical findings unequivocally demonstrate a pronounced optimization gradient bias in favor of acquiring representations from multimodal features over item ID embeddings. As a consequence, item ID embeddings frequently exhibit suboptimal characteristics despite the convergence of multimodal feature parameters. Given the rich informational content inherent in multimodal features, in this paper, we propose a novel model (i.e., LIRDRec) that learns item representations directly from these features to augment recommendation performance. Recognizing that features derived from each modality may capture disparate yet correlated aspects of items, we propose a multimodal transformation mechanism, integrated with modality-specific encoders, to effectively fuse features from all modalities. Moreover, to differentiate the influence of diverse modality types, we devise a progressive weight copying fusion module within LIRDRec. This module incrementally learns the weight assigned to each modality in synthesizing the final user or item representations. Finally, we utilize the powerful visual understanding of Multimodal Large Language Models (MLLMs) to convert the item images into texts and extract semantics embeddings upon the texts via LLMs. Empirical evaluations conducted on five real-world datasets validate the superiority of our approach relative to competing baselines. It is worth noting the proposed model, equipped with embeddings extracted from MLLMs and LLMs, can further improve the recommendation accuracy of NDCG@20 by an average of 4.21% compared to the original embeddings.
Abstract:Covert Communications (CC) can secure sensitive transmissions in industrial, military, and mission-critical applications within 6G wireless networks. However, traditional optimization methods based on Artificial Noise (AN), power control, and channel manipulation might not adapt to dynamic and adversarial environments due to the high dimensionality, nonlinearity, and stringent real-time covertness requirements. To bridge this gap, we introduce Shadow Wireless Intelligence (SWI), which integrates the reasoning capabilities of Large Language Models (LLMs) with retrieval-augmented generation to enable intelligent decision-making in covert wireless systems. Specifically, we utilize DeepSeek-R1, a mixture-of-experts-based LLM with RL-enhanced reasoning, combined with real-time retrieval of domain-specific knowledge to improve context accuracy and mitigate hallucinations. Our approach develops a structured CC knowledge base, supports context-aware retrieval, and performs semantic optimization, allowing LLMs to generate and adapt CC strategies in real time. In a case study on optimizing AN power in a full-duplex CC scenario, DeepSeek-R1 achieves 85% symbolic derivation accuracy and 94% correctness in the generation of simulation code, outperforming baseline models. These results validate SWI as a robust, interpretable, and adaptive foundation for LLM-driven intelligent covert wireless systems in 6G networks.
Abstract:As one of the most promising technologies for intellicise (intelligent and consice) wireless networks, Semantic Communication (SemCom) significantly improves communication efficiency by extracting, transmitting, and recovering semantic information, while reducing transmission delay. However, an integration of communication and artificial intelligence (AI) also exposes SemCom to security and privacy threats posed by intelligent eavesdroppers. To address this challenge, image steganography in SemCom embeds secret semantic features within cover semantic features, allowing intelligent eavesdroppers to decode only the cover image. This technique offers a form of "invisible encryption" for SemCom. Motivated by these advancements, this paper conducts a comprehensive exploration of integrating image steganography into SemCom. Firstly, we review existing encryption techniques in SemCom and assess the potential of image steganography in enhancing its security. Secondly, we delve into various image steganographic paradigms designed to secure SemCom, encompassing three categories of joint source-channel coding (JSCC) models tailored for image steganography SemCom, along with multiple training strategies. Thirdly, we present a case study to illustrate the effectiveness of coverless steganography SemCom. Finally, we propose future research directions for image steganography SemCom.
Abstract:Large Language Models (LLMs) demonstrate strong potential across a variety of tasks in communications and networking due to their advanced reasoning capabilities. However, because different LLMs have different model structures and are trained using distinct corpora and methods, they may offer varying optimization strategies for the same network issues. Moreover, the limitations of an individual LLM's training data, aggravated by the potential maliciousness of its hosting device, can result in responses with low confidence or even bias. To address these challenges, we propose a blockchain-enabled collaborative framework that connects multiple LLMs into a Trustworthy Multi-LLM Network (MultiLLMN). This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems. Specifically, we begin by reviewing related work and highlighting the limitations of existing LLMs in collaboration and trust, emphasizing the need for trustworthiness in LLM-based systems. We then introduce the workflow and design of the proposed Trustworthy MultiLLMN framework. Given the severity of False Base Station (FBS) attacks in B5G and 6G communication systems and the difficulty of addressing such threats through traditional modeling techniques, we present FBS defense as a case study to empirically validate the effectiveness of our approach. Finally, we outline promising future research directions in this emerging area.
Abstract:The integration of simultaneous wireless information and power transfer (SWIPT) technology in 6G Internet of Things (IoT) networks faces significant challenges in remote areas and disaster scenarios where ground infrastructure is unavailable. This paper proposes a novel unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) system enhanced by directional antennas to provide both computational resources and energy support for ground IoT terminals. However, such systems require multiple trade-off policies to balance UAV energy consumption, terminal battery levels, and computational resource allocation under various constraints, including limited UAV battery capacity, non-linear energy harvesting characteristics, and dynamic task arrivals. To address these challenges comprehensively, we formulate a bi-objective optimization problem that simultaneously considers system energy efficiency and terminal battery sustainability. We then reformulate this non-convex problem with a hybrid solution space as a Markov decision process (MDP) and propose an improved soft actor-critic (SAC) algorithm with an action simplification mechanism to enhance its convergence and generalization capabilities. Simulation results have demonstrated that our proposed approach outperforms various baselines in different scenarios, achieving efficient energy management while maintaining high computational performance. Furthermore, our method shows strong generalization ability across different scenarios, particularly in complex environments, validating the effectiveness of our designed boundary penalty and charging reward mechanisms.
Abstract:Semantic communication (SemCom) has recently emerged as a promising paradigm for next-generation wireless systems. Empowered by advanced artificial intelligence (AI) technologies, SemCom has achieved significant improvements in transmission quality and efficiency. However, existing SemCom systems either rely on training over large datasets and specific channel conditions or suffer from performance degradation under channel noise when operating in a training-free manner. To address these issues, we explore the use of generative diffusion models (GDMs) as training-free SemCom systems. Specifically, we design a semantic encoding and decoding method based on the inversion and sampling process of the denoising diffusion implicit model (DDIM), which introduces a two-stage forward diffusion process, split between the transmitter and receiver to enhance robustness against channel noise. Moreover, we optimize sampling steps to compensate for the increased noise level caused by channel noise. We also conduct a brief analysis to provide insights about this design. Simulations on the Kodak dataset validate that the proposed system outperforms the existing baseline SemCom systems across various metrics.
Abstract:Task-oriented semantic communication has emerged as a fundamental approach for enhancing performance in various communication scenarios. While recent advances in Generative Artificial Intelligence (GenAI), such as Large Language Models (LLMs), have been applied to semantic communication designs, the potential of Large Multimodal Models (LMMs) remains largely unexplored. In this paper, we investigate an LMM-based vehicle AI assistant using a Large Language and Vision Assistant (LLaVA) and propose a task-oriented semantic communication framework to facilitate efficient interaction between users and cloud servers. To reduce computational demands and shorten response time, we optimize LLaVA's image slicing to selectively focus on areas of utmost interest to users. Additionally, we assess the importance of image patches by combining objective and subjective user attention, adjusting energy usage for transmitting semantic information. This strategy optimizes resource utilization, ensuring precise transmission of critical information. We construct a Visual Question Answering (VQA) dataset for traffic scenarios to evaluate effectiveness. Experimental results show that our semantic communication framework significantly increases accuracy in answering questions under the same channel conditions, performing particularly well in environments with poor Signal-to-Noise Ratios (SNR). Accuracy can be improved by 13.4% at an SNR of 12dB and 33.1% at 10dB, respectively.
Abstract:As a paradigm shift towards pervasive intelligence, semantic communication (SemCom) has shown great potentials to improve communication efficiency and provide user-centric services by delivering task-oriented semantic meanings. However, the exponential growth in connected devices, data volumes, and communication demands presents significant challenges for practical SemCom design, particularly in resource-constrained wireless networks. In this work, we first propose a task-agnostic SemCom (TASC) framework that can handle diverse tasks with multiple modalities. Aiming to explore the interplay between communications and intelligent tasks from the information-theoretical perspective, we leverage information bottleneck (IB) theory and propose a distributed multimodal IB (DMIB) principle to learn minimal and sufficient unimodal and multimodal information effectively by discarding redundancy while preserving task-related information. To further reduce the communication overhead, we develop an adaptive semantic feature transmission method under dynamic channel conditions. Then, TASC is trained based on federated meta-learning (FML) for rapid adaptation and generalization in wireless networks. To gain deep insights, we rigorously conduct theoretical analysis and devise resource management to accelerate convergence while minimizing the training latency and energy consumption. Moreover, we develop a joint user selection and resource allocation algorithm to address the non-convex problem with theoretical guarantees. Extensive simulation results validate the effectiveness and superiority of the proposed TASC compared to baselines.
Abstract:The combination of Integrated Sensing and Communication (ISAC) and Mobile Edge Computing (MEC) enables devices to simultaneously sense the environment and offload data to the base stations (BS) for intelligent processing, thereby reducing local computational burdens. However, transmitting raw sensing data from ISAC devices to the BS often incurs substantial fronthaul overhead and latency. This paper investigates a three-tier collaborative inference framework enabled by Integrated Sensing, Communication, and Computing (ISCC), where cloud servers, MEC servers, and ISAC devices cooperatively execute different segments of a pre-trained deep neural network (DNN) for intelligent sensing. By offloading intermediate DNN features, the proposed framework can significantly reduce fronthaul transmission load. Furthermore, multiple-input multiple-output (MIMO) technology is employed to enhance both sensing quality and offloading efficiency. To minimize the overall sensing task inference latency across all ISAC devices, we jointly optimize the DNN partitioning strategy, ISAC beamforming, and computational resource allocation at the MEC servers and devices, subject to sensing beampattern constraints. We also propose an efficient two-layer optimization algorithm. In the inner layer, we derive closed-form solutions for computational resource allocation using the Karush-Kuhn-Tucker conditions. Moreover, we design the ISAC beamforming vectors via an iterative method based on the majorization-minimization and weighted minimum mean square error techniques. In the outer layer, we develop a cross-entropy based probabilistic learning algorithm to determine an optimal DNN partitioning strategy. Simulation results demonstrate that the proposed framework substantially outperforms existing two-tier schemes in inference latency.
Abstract:Mixture of Experts (MoE) has emerged as a promising paradigm for scaling model capacity while preserving computational efficiency, particularly in large-scale machine learning architectures such as large language models (LLMs). Recent advances in MoE have facilitated its adoption in wireless networks to address the increasing complexity and heterogeneity of modern communication systems. This paper presents a comprehensive survey of the MoE framework in wireless networks, highlighting its potential in optimizing resource efficiency, improving scalability, and enhancing adaptability across diverse network tasks. We first introduce the fundamental concepts of MoE, including various gating mechanisms and the integration with generative AI (GenAI) and reinforcement learning (RL). Subsequently, we discuss the extensive applications of MoE across critical wireless communication scenarios, such as vehicular networks, unmanned aerial vehicles (UAVs), satellite communications, heterogeneous networks, integrated sensing and communication (ISAC), and mobile edge networks. Furthermore, key applications in channel prediction, physical layer signal processing, radio resource management, network optimization, and security are thoroughly examined. Additionally, we present a detailed overview of open-source datasets that are widely used in MoE-based models to support diverse machine learning tasks. Finally, this survey identifies crucial future research directions for MoE, emphasizing the importance of advanced training techniques, resource-aware gating strategies, and deeper integration with emerging 6G technologies.